Determinants of the center of mass trajectory in human walking and running.

نویسندگان

  • C R Lee
  • C T Farley
چکیده

Walking is often modeled as an inverted pendulum system in which the center of mass vaults over the rigid stance limb. Running is modeled as a simple spring-mass system in which the center of mass bounces along on the compliant stance limb. In these models, differences in stance-limb behavior lead to nearly opposite patterns of vertical movements of the center of mass in the two gaits. Our goal was to quantify the importance of stance-limb behavior and other factors in determining the trajectory of the center of mass during walking and running. We collected kinematic and force platform data during human walking and running. Virtual stance-limb compression (i.e. reduction in the distance between the point of foot-ground contact and the center of mass during the first half of the stance phase) was only 26% lower for walking (0.091 m) than for running (0.123 m) at speeds near the gait transition speed. In spite of this relatively small difference, the center of mass moved upwards by 0.031 m during the first half of the stance phase during walking and moved downwards by 0.073 m during the first half of the stance phase during running. The most important reason for this difference was that the stance limb swept through a larger angle during walking (30.4 degrees) than during running (19.2 degrees). We conclude that stance-limb touchdown angle and virtual stance-limb compression both play important roles in determining the trajectory of the center of mass and whether a gait is a walk or a run.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

Minimizing center of mass vertical movement increases metabolic cost in walking.

A human walker vaults up and over each stance limb like an inverted pendulum. This similarity suggests that the vertical motion of a walker's center of mass reduces metabolic cost by providing a mechanism for pendulum-like mechanical energy exchange. Alternatively, some researchers have hypothesized that minimizing vertical movements of the center of mass during walking minimizes the metabolic ...

متن کامل

Reconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot

This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...

متن کامل

Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length

This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...

متن کامل

Dynamics of a Running Below-Knee Prosthesis Compared to Those of a Normal Subject

The normal human running has been simulated by two-dimensional biped model with 7 segments. Series of normal running experiments were performed and data of ground reaction forces measured by force plate was analyzed and was fitted to some Fourier series. The model is capable to simulate running for different ages and weights at different running speeds. A proportional derivative control algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 201 Pt 21  شماره 

صفحات  -

تاریخ انتشار 1998